
Designing quantum chemistry codes for
next-generation supercomputers

Jeff Hammond (jhammond@anl.gov)

Argonne National Laboratory – Leadership Computing Facility

CECAM – 5 September 2011

Jeff Hammond CECAM

Abstract (for posterity)

I will discuss the design of quantum chemistry codes for
next-generation supercomputers in light of experience with a wide
variety of architectures, including Blue Gene/P, Cray XE,
Infiniband clusters, and NVIDIA GPUs. Programming models and
algorithms that maximize performance will be described in detail.
On the primary topics of this workshop — fault tolerance and
energy efficiency — I will focus on the most obvious sources of
faults (programmer error) and energy inefficiency (suboptimal
algorithms). I will also describe my approach to optimizing
quantum chemistry codes for Blue Gene/Q, which is by far the
most energy efficient supercomputer to date (green500.org).

Jeff Hammond CECAM

Does power matter?

According to Jones, the real issue is delivering science to justify
whatever the power budget is and that human expertise in
algorithms and programming is more expensive than power.

Jeff Hammond CECAM

If power doesn’t matter

Jeff Hammond CECAM

Cray X1E

True globally accessible memory (pointer = node + address).

Vector machines do very well at dense linear algebra.

Cray compilers genuinely good at optimization.

No caches, just load from main memory in O(1) cycles.

Who needs MPI?

According to Buddy Bland, scientists were upset when it was
decommissioned in favor of Jaguar.

18 TF for 1+ MW was justified when Cray XT3/4 could do 10x
better.

Jeff Hammond CECAM

Power matters I

Hardware not designed for HPC, more suitable for Word and FPS.

Two trends in HPC processor architecture:

1 More-of-the-same (MOTS): more cores, more caches, more
bells+whistles.

2 Back-to-the-future (BTTF): vectors - SIMD ala FPU and
SIMT ala GPU.

In reality, we have both MOTS and BTTF in every machine;
integration varies. Tight integration is FPU in the cores ala BG;
loose integration is Cray XK6 (CPU+GPU), although CPU part is
same idea as other short-vector cores but with more NUMA.

Welcome to the future: the kitchen sink approach to architecture
design.

Jeff Hammond CECAM

Power matters II

Power efficiency forces us to use “parallelism all the way down”. . .

Green500 summary:

1 Blue Gene/Q (2097.19 MF/W)

4 Intel+NVIDIA (958.35 MF/W)

14 POWER7 (565.97 MF/W)

19 Cell-based (458.33 MF/W)

21 Intel-only (441.18 MF/W)

You can’t do anything on BGQ without significant parallelism:
10 PF = 48 r = 49,152 n = 786,432 c = 3,145,728 t

3M threads is not business as usual but it’s not like CPU+GPU is
a programmer’s dream.

Jeff Hammond CECAM

Science matters, right?

We are not getting vector machines back because of science. . .

Scientific simulation has to find ways to leverage the commercial
computing fad of the day (GUI, FPS, smartphone,. . .) unless
someone comes up with 10-100x the money for hardware.

Jeff Hammond CECAM

Power-efficient tensor algorithms

The real work is done by:

Edgar Solomonik
Devin Matthews
Martin Schatz

Jeff Hammond CECAM

Power-efficient algorithms

The most efficient way to minimize power consumption is to do
the same thing in less time.

Given the idle draw of most hardware, you cannot come close to
50% reduction from a power-aware algorithm, but many scientific
algorithms can run 2x faster with superior math.

Power-aware runtimes, etc. are pointless unless they are running
algorithms that are more than big-O notation optimal: both 104n
and n are O(n). Power-efficient O(n3) is asinine compared to
power-hungry O(n).

How much time/money/power is wasted every year because
Top500 doesn’t allow Strassen?

Jeff Hammond CECAM

Tensor Contraction Engine

What does it do?

1 GUI input quantum many-body theory e.g. CCSD.

2 Operator specification of theory.

3 Apply Wick’s theory to transform operator expressions into
array expressions.

4 Transform input array expression to operation tree using many
types of optimization.

5 Produce Fortran+Global Arrays+NXTVAL implementation.

Developer can intercept at various stages to modify theory,
algorithm or implementation.

Jeff Hammond CECAM

The practical TCE – Success stories

First parallel implementation of many (most) CC methods.

First truly generic CC code (not string-based):
{RHF,ROHF,UHF}×CC{SD,SDT,SDTQ}×{T /Λ,EOM,LR/QR}
Most of the largest calculations of their kind employ TCE:
CR-EOMCCSD(T), CCSD-LR α, CCSD-QR β, CCSDT-LR α

Reduces implementation time for new methods from years to
hours, TCE codes are easy to verify.

Significant hand-tuning by Karol Kowalski and others at PNNL
was required to make TCE run efficiently and scale to 1000
processors and beyond.

Jeff Hammond CECAM

Before TCE

CCSD/aug-cc-pVDZ – 192 b.f. – days on 1 processor

Benzene is close to crossover point between small and large.

Jeff Hammond CECAM

Linear response polarizability

CCSD/Z3POL – 1080 b.f. – 40 hours on 1024 processors

This problem is 20,000 times larger on the computer than benzene.

J. Chem. Phys. 129, 226101 (2008).

Jeff Hammond CECAM

http://link.aip.org/link/jcpsa6/v129/i22/p226101/s1

Quadratic response hyperpolarizability

CCSD/d-aug-cc-pVTZ – 812 b.f. – 20 hours on 1024 processors

Lower levels of theory are not reliable for this system.

J. Chem. Phys. 130, 194108 (2009).

Jeff Hammond CECAM

http://jcp.aip.org/resource/1/jcpsa6/v130/i19/p194108_s1

Charge-transfer excited-states of biomolecules

CR-EOMCCSD(T)/6-31G* – 584 b.f. – 1 hour on 256 cores

Lower levels of theory are wildly incorrect for this system.

Jeff Hammond CECAM

Excited-state calculation of conjugated arrays

CR-EOMCCSD(T)/6-31+G* – 1096 b.f. – 15 hours on 1024 cores

J. Chem. Phys. 132, 154103 (2010).

Even bigger systems done in Kowalski, et al., JCTC 7, 2200 (2011).

Jeff Hammond CECAM

http://link.aip.org/link/JCPSA6/v132/i15/p154103/s1

So what’s the problem?

Pseudocode for Ra,b
i ,j = Rc,d

i ,j ∗ V c,d
a,b :

for i,j in occupied blocks:

for a,b in virtual blocks:

for c,d in virtual blocks:

if symmetry criteria(i,j,a,b,c,d):

if dynamic load balancer(me):

Get block t(i,j,c,d) from T

Permute t(i,j,c,d)

Get block v(a,b,c,d) from V

Permute v(a,b,c,d)

r(i,j,c,d) += t(i,j,c,d) * v(a,b,c,d)

Permute r(i,j,a,b)

Accumulate r(i,j,a,b) block to R

Jeff Hammond CECAM

So what’s the problem?

DLB doesn’t consider distance of data or reuse.

No reuse of permuted local patches:
e.g. Permute t(i,j,c,d) called O(N2

tiles) times.

Permute is an evil version of STREAM:
∀i , j , k , l : Aijkl = BP(ijkl).

Get is effectively two-sided.

DLB requires remote atomics (in general, not in HW).

All-connect topology is bad on a torus. . .

Jeff Hammond CECAM

TCE algorithm topology

Jeff Hammond CECAM

So what’s the solution?

Tensor contractions are like big parallel matrix multiplication
operations, so why not reuse those algorithms (Cannon, SUMMA)?

+ Use collective communication instead of one-sided, which is
optimal on Blue Gene (2x BW in bcast).

+ Minimal local operations (computation and data reshuffling).

− Symmetry is hard to handle (DLB and one-sided were used by
TCE for a reason).

− If we do matrix multiplication globally, we have to do
permutation globally, generating alltoall patterns.

The critical challenge is to solve the symmetry issue. . .

Note: Fast collectives are not just a BG feature. One can use
systolic collectives on a Cray if the schedular provides contiguous
partitions.

Jeff Hammond CECAM

Summary

Until someone comes up with a numerical robust reduced-scaling
CC algorithm, the best thing to do is make the existing algorithms
run faster.

Preliminary results suggest we can reduce time-to-solution by 2-5x,
reduce memory usage by 2x and make efficient use of the most
power-efficient architecture available (Blue Gene).

We expect this to increase power-efficiency by 2-5x on the same
hardware and as much as 20x relative to COTS clusters that are
designed to run NWChem.

Jeff Hammond CECAM

OSPRI
New One-Sided PRImitives for Global Arrays and Other

One-sided Models

Most of the real work was done by Sreeram Potluri.

Jeff Hammond CECAM

The PGAS programming model

Use of Global Arrays (GA) by NWChem driven by programmer
productivity:

hides complexity of distributed data

easy dynamic load-balancing

ameliorates local memory limitations

wrappers to math libraries (ScaLAPACK, PeIGS)

ARMCI emerged later as the communication runtime component
within Global Arrays.

The NWChem project started before MPI was available and
certainly before a mature set of libraries were built upon it.

Jeff Hammond CECAM

Global Arrays behavior

GA Get arguments: handle, global indices, pointer to target buffer

1 translate global indices to rank plus local indices

2 issue remote get operations to each rank

3 remote packing of non-contiguous data

4 packed buffer arrives at caller

5 local buffer assembled

Jeff Hammond CECAM

Global Arrays components

GA

A
ddress

T
ransla tion

D
ata

M
ovem

ent

M
em
ory

A
llocati on

Parallel math capability
is orthogonal because
ScaLAPACK and PeIGS
use MPI.

This abstraction is not
implemented effectively.

Jeff Hammond CECAM

Overview

NWChemNWChem

Global Arrays

ARMCI

GA
interface

ARMCI
interface

Put, Get, Acc (CSI)

Rmw (scalar ints)

Fence, Sync

Jeff Hammond CECAM

Modern System Design Points

Torus topology (2.5-6D)

Lightweight Linux(-like) OS

Low-latency, high-injection NIC

RDMA with offloading

MPI+OpenMP, other hybrids

HW GAS support

Reliable, connectionless networks

HW collectives

Some systems (BG) provide HW active-messages.

Jeff Hammond CECAM

Design by benchmarking

Want quantitatize answers for:

Accumulate: interrupts versus polling (CHT)?

Non-contiguous: direct versus packing?

Local: DMA versus memcpy?

Local: DMA contention?

Remote completion: ack versus flush?

Packing: inline versus handoff (CHT only)?

Buffering: heap or internal?

Buffering: handling resource exhaustion.

Whenever the answer is usage-dependant, we use a tunable
runtime parameter.

Jeff Hammond CECAM

Crossover for packing

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8	
 16
	

32
	

64
	

12
8	

25
6	

51
2	
 1K
	

2K
	

La
te
nc
y	

(u
s)
	

Chunk	
 Size	
 (Bytes)	

Direct	
 Put	

Packed	
 Send	

Jeff Hammond CECAM

Overhead for thread-safety

DCMF critical sections are a heavy hammer.

 1

 2

 4

 8

 8 64 512 4096

L
a
te

n
c
y
 (

u
s
e
c
)

Message Size (bytes)

Put Latency

DCMF-LocalCompletion
OSPRI-NoCHT-LocalCompletion
OSPRI-Atomics-LocalCompletion

OSPRI-CS-LocalCompletion

Jeff Hammond CECAM

Versus other runtimes

These ARMCI results much improved over original implementation.

 1

 2

 4

 8

 16

 32

 64

 8 64 512 4096 32768

L
a
te

n
c
y
 (

u
s
e
c
)

Message Size (bytes)

Put Latency

OSPRI-LocalCompletion
OSPRI-RemoteCompletion

ARMCI-LocalCompletion
ARMCI-RemoteCompletion

MPI2-RMA-Passive

Jeff Hammond CECAM

GA Put/Get — 1D remote

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 8 64 512 4096 32768 262144

B
a
n
d
w

id
th

 (
M

B
/s

)

Dimension of 1D patch

1D Put/Get (remote)

GAGet-ARMCI
GAGet-OSPRI
GAPut-ARMCI
GAPut-OSPRI

1 LINK

Jeff Hammond CECAM

GA Put/Get — 2D remote

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64 128 256 512

B
a
n
d
w

id
th

 (
M

B
/s

)

Dimension of 2D patch

2D Put/Get (remote)

GAGet-ARMCI
GAGet-OSPRI
GAPut-ARMCI
GAPut-OSPRI

1 LINK

Jeff Hammond CECAM

GA Acc — 1D remote

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 8 64 512 4096 32768 262144

B
a
n
d
w

id
th

 (
M

B
/s

)

Dimension of 1D patch

1D Accumulate (remote)

GAAccumulate-ARMCI
GAAccumulate-OSPRI

1 LINK

Jeff Hammond CECAM

GA Acc — 2D remote

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64 128 256 512

B
a
n
d
w

id
th

 (
M

B
/s

)

Dimension of 2D patch

2D Accumulate (remote)

GAAccumulate-ARMCI
GAAccumulate-OSPRI

1 LINK

Jeff Hammond CECAM

Ordering semantics

ARMCI provides location consistency (load-store ordering).

NWChem and other GA apps don’t need this.

Only necessary for conflicting access.

Metadata to detect conflicts from sender is prohibitive.

Push consistency up stack to user: flush as needed.

Cost of ordering grows with system.

Ordering prohibitive when network doesn’t provide it.

OSPRI design philosophy is to be soft on consistency, let the user
(or higher level library) worry about it.

Jeff Hammond CECAM

Effect of ordering semantics

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 8 64 512 4096 32768 262144

L
a
te

n
c
y
 (

u
s
e
c
)

Message Size (bytes)

ARMCI-over-OSPRI Get Latency

Strict-Ordering (SO)
Partial-Ordering (PO)

Jeff Hammond CECAM

Programming Blue Gene/Q

Jeff Hammond CECAM

Things I can tell you

I cannot clarify or elaborate on any of the following statements.
Please do not ask.

16-core nodes, 4-way SMT (up to 64 threads per node)

16 Gb memory per node

1.6 GHz

204.8 GFLOP/s per node

48 racks = 49,152 nodes = 786,432 cores

Argonne system is 10 PF.

Jeff Hammond CECAM

Things IBM has said publicly

The following quotes are taken from the abstract alone.

Jeff Hammond CECAM

Network

Source: http://www.hoti.org/hoti19/keynotes/.

“The chip has 11 ports; each port can transmit data at 2
GB/s and simultaneously receive at 2 GB/s for a total
bandwidth of 44 GB/s.”

“The network consists of a five dimensional compute node
torus with a subset of compute nodes using the 11th port to
connect to I/O nodes.”

“Blue Gene/Q machine has approximately 46 times the
bisection bandwidth than that of a first generation Blue
Gene/L machine with the same number of nodes.”

“A single network supports point-to-point and collective
traffic such as MPI all reduces at near link bandwidth.”

“The collectives can be over an entire partition or any
rectangular subset of a partition. The network provides bit
reproducible, single pass floating point collectives.”

Jeff Hammond CECAM

Things IBM has said publicly

Jeff Hammond CECAM

Processor

Source:
http://www.power.org/events/PowerWebinar-03-29-11/

· · · IBM March 29 Webinar - Dr. Luigi.pdf.

Collective and barrier networks are embedded in 5-D torus.

Integer and floating-point addition support in collective
network.

SIMD floating point unit (8 flop/clock).

Speculative multithreading and transactional memory support
with 32 MB of speculative state.

17th Processor core for system functions.

Jeff Hammond CECAM

Programming Blue Gene/Q – Software

All of our efforts are portable to other systems except vector
intrinsics, which are never portable (e.g. SSE).

MPI ranks: 48K (1/n), 800K (1/c) or 3M (1/t)?
Program for 1/n, accept 1/c for unthreadable legacy codes.

Combine task and data parallelism in threading model.

Pthread+OpenMP interoperability is a challenge on BGP and
in general.
TBB porting activities are in-progress. We have TBB on BGP
and POWER7.

Vectorization done via libraries and intrinsics.

Emphasize separation of internode and intranode parallelism,
leading to reuse of internode components on heterogeneous
systems.

Jeff Hammond CECAM

Programming Blue Gene/Q – Algorithms

Hierarchical instead of flat: FMM, tree-codes.

Asynchronous everything (leverage async. coll.).

Topology-aware distributed data-structures (e.g. GPAW on
BGP).

Move away from DLB and 1-sided but use OSPRI when
necessary.

Jeff Hammond CECAM

Acknowledgments

Argonne: Pavan Balaji, Jim Dinan, Eugene DePrince

Ohio State: Sreeram Potluri

IBM: Brian Smith and Mike Blocksome

Jülich: Ivo Kabadshow and Holger Dachsel

PNNL: Sriram Krishnamoorthy

UOregon: Sameer Shende and Allen Malony

Texas: Devan Matthews, Jack Poulson, Martin Schatz, Robert
van de Geijn

Berkeley: Edgar Solomonik, (Jim Demmel)

Jeff Hammond CECAM

What is TCE?

1 NWChem users know it as the coupled-cluster module that
supports a kitchen sink of methods.

2 NWChem developers know it as the Python program that
generates item 1.

3 People in this room probably know it as a multi-institutional
collaboration that resulted in item 2 (among other things).

Jeff Hammond CECAM

Summary of TCE module

http://cloc.sourceforge.net v 1.53 T=30.0 s

Language files blank comment code

Fortran 77 11451 1004 115129 2824724

SUM: 11451 1004 115129 2824724

Only <25 KLOC are hand-written; ∼100 KLOC is utility code
following TCE data-parallel template.

Jeff Hammond CECAM

My thesis work

http://cloc.sourceforge.net v 1.53 T=13.0 s

Language files blank comment code

Fortran 77 5757 0 29098 983284

SUM: 5757 0 29098 983284

Total does not include ∼1M LOC that was reused (EOM).

CCSD quadratic response hyperpolarizability was derived,
implemented and verified during a two week trip to PNNL.
Over 100 KLOC were “written” in under an hour.

Jeff Hammond CECAM

The practical TCE – Limitations

What does it NOT do?

Relies upon external (read: hand-written) implementations of
many procedures.

Hand-written procedures define underlying data
representation.

Does not effectively reuse code (TCE needs own runtime).
Of course, 4M LOC in F77 could be 4K LOC in C++.

Ignores some obvious abstraction layers and hierarchical
parallelism.

None of these shortcomings are intrinsic!

An instantiation of TCE is limited to the set of code
transformations known to the implementer.

Jeff Hammond CECAM

The practical TCE – Performance analysis

Performance TCE in NWChem cannot be understood independent
of GA programming model.

GA couldn’t do block sparse so TCE does its own indexing.
Table lookups are/were a bottleneck.

Suboptimal data representation leads to nonlocal
communication.

Single-level tiling isn’t ideal.

Lack of abstraction for kernel prevents optimization;
e.g. tensor permutations significant portion of wall time.

Time does not permit me to quantify performance issues.

Can all hand-optimizations can be back-ported into TCE?
Is this necessary? What are the challenges of an embedded DSL?

Jeff Hammond CECAM

HPC circa 2012

Systems coming online in 2012 will have 200K+ cores with
significant node-level parallelism both in the processor(s) and the
NIC (e.g. Cray Gemini has 48 ports).

BlueWaters (PERCS): 37,500+ sockets, 8 cores per socket.

Mira (Blue Gene/Q): 49,152 nodes, 1 16-core CPU per node.

Titan (Cray XK): 12,160 nodes, 1 AMD Bulldozer CPU and 1
NVIDIA Kepler GPU per node.

[Details from NCSA, Wikipedia and Buddy Bland’s public slides.]

Node counts not increasing relative to current systems, so
node-level parallelism is our primary challenge.

Process-only parallelism is not optimal for any of these machines.
TCE 2.0 must address heterogeneity.

Jeff Hammond CECAM

Exascale Architecture

10 GB

1000s of threads
(private cache)

per-node
shared memory

~1 million nodes
(hierarchical network)

50 GB/s

300 GB/s300 GB/s 300 GB/s300 GB/s300 GB/s300 GB/s 300 GB/s300 GB/s

10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB

Jeff Hammond CECAM

Coupled-cluster theory

|CC 〉 = exp(T)|0〉
T = T1 + T2 + · · ·+ Tn (n� N)

T1 =
∑
ia

tai â†aâi

T2 =
∑
ijab

tabij â†aâ†bâj âi

|ΨCCD〉 = exp(T2)|ΨHF 〉
= (1 + T2 + T 2

2)|ΨHF 〉
|ΨCCSD〉 = exp(T1 + T2)|ΨHF 〉

= (1 + T1 + · · ·+ T 4
1 + T2 + T 2

2 + T1T2 + T 2
1 T2)|ΨHF 〉

Jeff Hammond CECAM

Coupled cluster (CCD) implementation

Rab
ij = V ab

ij + P(ia, jb)

[
T ae
ij I be − T ab

im Imj +
1

2
V ab
ef T ef

ij +

1

2
T ab
mnImn

ij − T ae
mj I

mb
ie − Ima

ie T eb
mj + (2T ea

mi − T ea
im)Imb

ej

]
I ab = (−2V mn

eb + V mn
be)T ea

mn

I ij = (2V mi
ef − V im

ef)T ef
mj

I ijkl = V ij
kl + V ij

ef T ef
kl

I iajb = V ia
jb −

1

2
V im
eb T ea

jm

I iabj = V ia
bj + V im

be (T ea
mj −

1

2
T ae
mj)−

1

2
V mi
be T ae

mj

Tensor contractions currently implemented as GEMM plus PERMUTE.

Jeff Hammond CECAM

Hardware Details

CPU GPU
X5550 2 X5550 C1060 C2050

processor speed (MHz) 2660 2660 1300 1150
memory bandwidth (GB/s) 32 64 102 144

memory speed (MHz) 1066 1066 800 1500
ECC available yes yes no yes
SP peak (GF) 85.1 170.2 933 1030
DP peak (GF) 42.6 83.2 78 515

power usage (W) 95 190 188 238

Note that power consumption is apples-to-oranges since CPU does
not include DRAM, whereas GPU does.

Jeff Hammond CECAM

Relative Performance of GEMM

GPU versus SMP CPU (8 threads):

 0

 100

 200

 300

 400

 500

 600

 700

 0 1000 2000 3000 4000 5000

pe
rf

or
m

an
ce

 (
gi

ga
flo

p/
s)

rank

SGEMM performance

X5550
C2050

CPU = 156.2 GF
GPU = 717.6 GF

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500 4000

pe
rf

or
m

an
ce

 (
gi

ga
flo

p/
s)

rank

DGEMM performance

X5550
C2050

CPU = 79.2 GF
GPU = 335.6 GF

We expect roughly 4-5 times speedup based upon this evaluation
because GEMM should be 90% of the execution time.

Jeff Hammond CECAM

CPU/GPU CCD

Iteration time in seconds
our DP code X5550

C2050 C1060 X5550 Molpro TCE GAMESS
C8H10 0.3 0.8 1.3 2.3 5.1 6.2
C10H8 0.5 1.5 2.5 4.8 10.6 12.7
C10H12 0.8 2.5 3.5 7.1 16.2 19.7
C12H14 2.0 7.1 10.0 17.6 42.0 57.7
C14H10 2.7 10.2 13.9 29.9 59.5 78.5
C14H16 4.5 16.7 21.6 41.5 90.2 129.3

C20 8.8 29.9 40.3 103.0 166.3 238.9
C16H18 10.5 35.9 50.2 83.3 190.8 279.5
C18H12 12.7 42.2 50.3 111.8 218.4 329.4
C18H20 20.1 73.0 86.6 157.4 372.1 555.5

Our algorithm is most similar to GAMESS and does ∼4 times the
flops as Molpro.

Jeff Hammond CECAM

CPU+GPU CCSD

Iteration time (s)
Hybrid CPU Molpro NWChem PSI3 TCE GAMESS

C8H10 0.6 1.4 2.4 3.6 7.9 8.4 7.2
C10H8 0.9 2.6 5.1 8.2 17.9 16.8 15.3
C10H12 1.4 4.1 7.2 11.3 23.6 25.2 23.6
C12H14 3.3 11.1 19.0 29.4 54.2 64.4 65.1
C14H10 4.4 15.5 31.0 49.1 61.4 90.7 92.9
C14H16 6.3 24.1 43.1 65.0 103.4 129.2 163.7

C20 10.5 43.2 102.0 175.7 162.6 233.9 277.5
C16H18 10.0 38.9 84.1 117.5 192.4 267.9 345.8
C18H12 14.1 57.1 116.2 178.6 216.4 304.5 380.0
C18H20 22.5 95.9 161.4 216.3 306.9 512.0 641.3

Statically distribute most diagrams between GPU and CPU,
dynamically distribute leftovers.

Jeff Hammond CECAM

More hybrid CCSD

Iteration time (s) Speedup
molecule Basis o v Hybrid CPU Molpro CPU Molpro
CH3OH aTZ 7 175 2.5 4.5 2.8 1.8 1.1
benzene aDZ 15 171 5.1 14.7 17.4 2.9 3.4

C2H6SO4 aDZ 23 167 9.0 33.2 31.2 3.7 3.5
C10H12 DZ 26 164 10.7 39.5 56.8 3.7 5.3
C10H12 6-31G 26 78 1.4 4.1 7.2 2.9 5.1

Calculations are small because we are not using out-of-core or
distributed storage, hence are limited by CPU main memory.

Physics- or array-based domain decomposition will lead to
single-node tasks of this size.

Jeff Hammond CECAM

Lessons learned

Do not GPU-ize legacy code!
Must redesign and reimplement (hopefully automatically).

Verification is a pain.

CC possess significant task-based parallelism.

Threading ameliorates memory capacity and BW bottlenecks.
(How many cores required to saturate STREAM BW?)

GEMM and PERMUTE kernels both data-parallel, readily
parallelizable via OpenMP or CUDA.

Careful organization of asynchronous data movement hides
entire PCI transfer cost for non-trivial problems.

Näive data movement leads to 2x for CCSD; smart data
movement leads to 8x.

Jeff Hammond CECAM

Summary of GPU CC

Implemented CCD on GPU and on CPU using
CUDA/OpenMP and vendor BLAS.
Implementation quality is very similar.

Implemented CCSD on CPU+GPU using streams and mild
dynamic load-balancing.

Compared to legacy codes as directly as possible:

Apples-to-apples CPU vs. GPU is 4-5x (as predicted).
Apples-to-oranges us versus them shows 7-10x.
Our CPU code is 2x, so again 4-5x is from GPU.

We have very preliminary MPI results using task parallelism plus
MPI Allreduce.

Load-balancing is the only significant barrier to GA+GPU
implementation.

Jeff Hammond CECAM

Chemistry Details

Molecule o v

C8H10 21 63
C10H8 24 72
C10H12 26 78
C12H14 31 93
C14H10 33 99
C14H16 36 108

C20 40 120
C16H18 41 123
C18H12 42 126
C18H20 46 138

6-31G basis set

C1 symmetry

F and V from GAMESS via disk

Since January . . .

Integrated with PSI3 (GPL).

No longer memory-limited by GPU.

Working on GA-like one-sided.

GPU one-sided R&D since 2009.

Jeff Hammond CECAM

Numerical Precision versus Performance

Iteration time in seconds
C1060 C2050 X5550

molecule SP DP SP DP SP DP

C8H10 0.2 0.8 0.2 0.3 0.7 1.3
C10H8 0.4 1.5 0.2 0.5 1.3 2.5
C10H12 0.7 2.5 0.4 0.8 2.0 3.5
C12H14 1.8 7.1 1.0 2.0 5.6 10.0
C14H10 2.6 10.2 1.5 2.7 8.4 13.9
C14H16 4.1 16.7 2.4 4.5 12.1 21.6

C20 6.7 29.9 4.1 8.8 22.3 40.3
C16H18 9.0 35.9 5.0 10.5 28.8 50.2
C18H12 10.1 42.2 5.6 12.7 29.4 50.3
C18H20 17.2 73.0 10.1 20.1 47.0 86.6

This the apples-to-apples CPU vs. GPU.

Jeff Hammond CECAM

